Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Front Oncol ; 11: 738801, 2021.
Article in English | MEDLINE | ID: mdl-34804927

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with poor prognosis and limited therapeutic options. Alternating electrical fields with low intensity called "Tumor Treating Fields" (TTFields) are a new, non-invasive approach with almost no side effects and phase 3 trials are ongoing in advanced PDAC. We evaluated TTFields in combination with mild hyperthermia. Three established human PDAC cell lines and an immortalized pancreatic duct cell line were treated with TTFields and hyperthermia at 38.5°C, followed by microscopy, assays for MTT, migration, colony and sphere formation, RT-qPCR, FACS, Western blot, microarray and bioinformatics, and in silico analysis using the online databases GSEA, KEGG, Cytoscape-String, and Kaplan-Meier Plotter. Whereas TTFields and hyperthermia alone had weak effects, their combination strongly inhibited the viability of malignant, but not those of nonmalignant cells. Progression features and the cell cycle were impaired, and autophagy was induced. The identified target genes were key players in autophagy, the cell cycle and DNA repair. The expression profiles of part of these target genes were significantly involved in the survival of PDAC patients. In conclusion, the combination of TTFields with mild hyperthermia results in greater efficacy without increased toxicity and could be easily clinically approved as supporting therapy.

4.
Bioelectrochemistry ; 141: 107881, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34245959

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a poor prognosis. More effective treatment options are urgently needed. The use of physical and weak alternating electric fields (TTFields) can inhibit cell division of PDAC carcinoma and is currently being investigated in clinical trials. Here, we analyzed this new physical treatment under non-ideal conditions such as may occur during patient treatment. Three established human PDAC cell lines BxPC-3, gemcitabine-resistant BxPC-3 (BxGem), AsPC-1, and a non-malignant primary pancreatic cell line CRL-4023 were treated with TTFields in vitro. MTT assays, electrical impedance measurement, cell staining with Annexin V/7AAD followed by FACS analysis, digital image analysis and immunohistochemistry were performed. Treatment with TTFields smaller than 0.7 V/cm and field lines in the direction of mitotic spindle orientation significantly inhibited proliferation of all PDAC cells at 150 kHz, but significantly increased viability of AsPC-1 cells at all frequencies between 100 kHz and 300 kHz and that of BxPC-3 and BxGem cells at 250 kHz. Apoptosis or necrosis were not induced. Non-malignant CRL-4023 cells were not affected at 150 kHz. TTFields damaged PDAC cell lines but even favored their viability at very weak field strength and unfavorable frequency or inadequate field direction.


Subject(s)
Carcinoma, Pancreatic Ductal/therapy , Electricity , Pancreatic Neoplasms/therapy , Apoptosis , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...